Cars - how to take care of them?

Dodane: 09-09-2016 16:00
Cars - how to take care of them? mot emissions failure

istory of the internal combustion engine

Main article: History of the internal combustion engine

At one time, the word engine (from Latin, via Old French, ingenium, "ability") meant any piece of machinery ? a sense that persists in expressions such as siege engine. A "motor" (from Latin motor, "mover") is any machine that produces mechanical power. Traditionally, electric motors are not referred to as "Engines"; however, combustion engines are often referred to as "motors." (An electric engine refers to a locomotive operated by electricity.)

In boating an internal combustion engine that is installed in the hull is referred to as an engine, but the engines that sit on the transom are referred to as motors.3


Gas turbines

Gas turbines
Main article: gas turbine
Turbine Power Plant

A gas turbine compresses air and uses it to turn a turbine. It is essentially a Jet engine which directs it's output to a shaft. There are three stages to a turbine: 1) air is drawn through a compressor where the temperature rises due to compression, 2) fuel is added in the combuster, and 3) hot air is exhausted through turbines blades which rotate a shaft connected to the compressor.

A gas turbine is a rotary machine similar in principle to a steam turbine and it consists of three main components: a compressor, a combustion chamber, and a turbine. The air, after being compressed in the compressor, is heated by burning fuel in it. About ? of the heated air, combined with the products of combustion, expands in a turbine, producing work output that drives the compressor. The rest (about ?) is available as useful work output. 26

Gas Turbines are among the MOST efficient internal combustion engines. The General Electric 7HA and 9HA turbine electrical plants are rated at over 61% efficiency. 27


A single main bearing

On its bottom, the sump contains an oil intake covered by a mesh filter which is connected to an oil pump then to an oil filter outside the crankcase, from there it is diverted to the crankshaft main bearings and valve train. The crankcase contains at least one oil gallery (a conduit inside a crankcase wall) to which oil is introduced from the oil filter. The main bearings contain a groove through all or half its circumference; the oil enters to these grooves from channels connected to the oil gallery. The crankshaft has drillings which take oil from these grooves and deliver it to the big end bearings. All big end bearings are lubricated this way. A single main bearing may provide oil for 0, 1 or 2 big end bearings. A similar system may be used to lubricate the piston, its gudgeon pin and the small end of its connecting rod; in this system, the connecting rod big end has a groove around the crankshaft and a drilling connected to the groove which distributes oil from there to the bottom of the piston and from then to the cylinder.

Other systems are also used to lubricate the cylinder and piston. The connecting rod may have a nozzle to throw an oil jet to the cylinder and bottom of the piston. That nozzle is in movement relative to the cylinder it lubricates, but always pointed towards it or the corresponding piston.

Typically a forced lubrication systems have a lubricant flow higher than what is required to lubricate satisfactorily, in order to assist with cooling. Specifically, the lubricant system helps to move heat from the hot engine parts to the cooling liquid (in water-cooled engines) or fins (in air-cooled engines) which then transfer it to the environment. The lubricant must be designed to be chemically stable and maintain suitable viscosities within the temperature range it encounters in the engine.